90 research outputs found

    Forgetful maps between Deligne-Mostow ball quotients

    Full text link
    We study forgetful maps between Deligne-Mostow moduli spaces of weighted points on P^1, and classify the forgetful maps that extend to a map of orbifolds between the stable completions. The cases where this happens include the Livn\'e fibrations and the Mostow/Toledo maps between complex hyperbolic surfaces. They also include a retraction of a 3-dimensional ball quotient onto one of its 1-dimensional totally geodesic complex submanifolds

    Quadri-tilings of the plane

    Full text link
    We introduce {\em quadri-tilings} and show that they are in bijection with dimer models on a {\em family} of graphs {R∗}\{R^*\} arising from rhombus tilings. Using two height functions, we interpret a sub-family of all quadri-tilings, called {\em triangular quadri-tilings}, as an interface model in dimension 2+2. Assigning "critical" weights to edges of R∗R^*, we prove an explicit expression, only depending on the local geometry of the graph R∗R^*, for the minimal free energy per fundamental domain Gibbs measure; this solves a conjecture of \cite{Kenyon1}. We also show that when edges of R∗R^* are asymptotically far apart, the probability of their occurrence only depends on this set of edges. Finally, we give an expression for a Gibbs measure on the set of {\em all} triangular quadri-tilings whose marginals are the above Gibbs measures, and conjecture it to be that of minimal free energy per fundamental domain.Comment: Revised version, minor changes. 30 pages, 13 figure

    Geometry and observables in (2+1)-gravity

    Full text link
    We review the geometrical properties of vacuum spacetimes in (2+1)-gravity with vanishing cosmological constant. We explain how these spacetimes are characterised as quotients of their universal cover by holonomies. We explain how this description can be used to clarify the geometrical interpretation of the fundamental physical variables of the theory, holonomies and Wilson loops. In particular, we discuss the role of Wilson loop observables as the generators of the two fundamental transformations that change the geometry of (2+1)-spacetimes, grafting and earthquake. We explain how these variables can be determined from realistic measurements by an observer in the spacetime.Comment: Talk given at 2nd School and Workshop on Quantum Gravity and Quantum Geometry (Corfu, September 13-20 2009); 10 pages, 13 eps figure

    Pattern densities in fluid dimer models

    Full text link
    In this paper, we introduce a family of observables for the dimer model on a bi-periodic bipartite planar graph, called pattern density fields. We study the scaling limit of these objects for liquid and gaseous Gibbs measures of the dimer model, and prove that they converge to a linear combination of a derivative of the Gaussian massless free field and an independent white noise.Comment: 38 pages, 3 figure

    Degenerations of ideal hyperbolic triangulations

    Full text link
    Let M be a cusped 3-manifold, and let T be an ideal triangulation of M. The deformation variety D(T), a subset of which parameterises (incomplete) hyperbolic structures obtained on M using T, is defined and compactified by adding certain projective classes of transversely measured singular codimension-one foliations of M. This leads to a combinatorial and geometric variant of well-known constructions by Culler, Morgan and Shalen concerning the character variety of a 3-manifold.Comment: 31 pages, 11 figures; minor changes; to appear in Mathematische Zeitschrif

    Geometry, topology and dynamics of geodesic flows on noncompact polygonal surfaces

    Full text link
    We establish the background for the study of geodesics on noncompact polygonal surfaces. For illustration, we study the recurrence of geodesics on ZZ-periodic polygonal surfaces. We prove, in particular, that almost all geodesics on a topologically typical ZZ-periodic surface with boundary are recurrent.Comment: 34 pages, 13 figures. To be published in V. V. Kozlov's Festschrif

    Thurston's pullback map on the augmented Teichm\"uller space and applications

    Full text link
    Let ff be a postcritically finite branched self-cover of a 2-dimensional topological sphere. Such a map induces an analytic self-map σf\sigma_f of a finite-dimensional Teichm\"uller space. We prove that this map extends continuously to the augmented Teichm\"uller space and give an explicit construction for this extension. This allows us to characterize the dynamics of Thurston's pullback map near invariant strata of the boundary of the augmented Teichm\"uller space. The resulting classification of invariant boundary strata is used to prove a conjecture by Pilgrim and to infer further properties of Thurston's pullback map. Our approach also yields new proofs of Thurston's theorem and Pilgrim's Canonical Obstruction theorem.Comment: revised version, 28 page

    B^F Theory and Flat Spacetimes

    Full text link
    We propose a reduced constrained Hamiltonian formalism for the exactly soluble B∧FB \wedge F theory of flat connections and closed two-forms over manifolds with topology Σ3×(0,1)\Sigma^3 \times (0,1). The reduced phase space variables are the holonomies of a flat connection for loops which form a basis of the first homotopy group π1(Σ3)\pi_1(\Sigma^3), and elements of the second cohomology group of Σ3\Sigma^3 with value in the Lie algebra L(G)L(G). When G=SO(3,1)G=SO(3,1), and if the two-form can be expressed as B=e∧eB= e\wedge e, for some vierbein field ee, then the variables represent a flat spacetime. This is not always possible: We show that the solutions of the theory generally represent spacetimes with ``global torsion''. We describe the dynamical evolution of spacetimes with and without global torsion, and classify the flat spacetimes which admit a locally homogeneous foliation, following Thurston's classification of geometric structures.Comment: 21 pp., Mexico Preprint ICN-UNAM-93-1

    Distances on Lozenge Tilings

    Get PDF
    International audienceIn this paper, a structural property of the set of lozenge tilings of a 2n-gon is highlighted. We introduce a simple combinatorial value called Hamming-distance, which is a lower bound for the flipdistance (i.e. the number of necessary local transformations involving three lozenges) between two given tilings. It is here proven that, for n5, We show that there is some deficient pairs of tilings for which the flip connection needs more flips than the combinatorial lower bound indicates

    Peripheral fillings of relatively hyperbolic groups

    Full text link
    A group theoretic version of Dehn surgery is studied. Starting with an arbitrary relatively hyperbolic group GG we define a peripheral filling procedure, which produces quotients of GG by imitating the effect of the Dehn filling of a complete finite volume hyperbolic 3--manifold MM on the fundamental group π1(M)\pi_1(M). The main result of the paper is an algebraic counterpart of Thurston's hyperbolic Dehn surgery theorem. We also show that peripheral subgroups of GG 'almost' have the Congruence Extension Property and the group GG is approximated (in an algebraic sense) by its quotients obtained by peripheral fillings. Various applications of these results are discussed.Comment: The difference with the previous version is that Proposition 3.2 is proved for quasi--geodesics instead of geodesics. This allows to simplify the exposition in the last section. To appear in Invent. Mat
    • …
    corecore